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We examine size-dependent deliquescence/efflorescence phase transformation for particles down to
several nanometers in size. Thermodynamic properties of inorganic salt particles, coated with
aqueous solution layers of varying thickness and surrounded by vapor, are analyzed. A thin layer
criterion �TLC� is introduced to define a limiting deliquescence relative humidity �RHD� for small
particles. This requires: �1� equality of chemical potentials between salt in an undissolved core, and
thin adsorbed solution layer, and �2� equality of chemical potentials between water in the thin layer
and vapor phase. The usual bulk deliquescence conditions are recovered in the limit of large dry
particle size. Nanosize particles are found to deliquesce at relative humidity just below the RHD on
crossing a nucleation barrier, located at a critical solution layer thickness. This barrier vanishes
precisely at the RHD defined by the TLC. Concepts and methods from nucleation theory including
the kinetic potential, self-consistent nucleation theory, nucleation theorems, and the Gibbs dividing
surface provide theoretical foundation and point to unifying features of small particle deliquescence/
efflorescence processes. These include common thermodynamic area constructions, useful for
interpretation of small particle water uptake measurements, and a common free-energy surface, with
constant RH cross sections describing deliquescence and efflorescence related through the
nucleation theorem. © 2009 American Institute of Physics. �doi:10.1063/1.3251056�

I. INTRODUCTION

Following uptake of water by deliquescence, atmo-
spheric particles can easily grow to several times their dry
diameter. The larger particles are more efficient scatterers of
visible light, condensation sinks for condensable vapors, and
sites onto which cloud droplets can form. Heterogeneous
chemical transformations are also affected by the water up-
take. For example, sulfate formation in aqueous particles
proceeds through the partitioning of SO2 to the aqueous
phase followed by aqueous-phase oxidation to sulfate
whereas efflorescence to a crystalline particle removes this
pathway. Through such effects, hygroscopic particle growth
has important consequences for aerosol radiative forcing of
climate both directly, through short-wavelength scattering,
and indirectly, through cloud modification.

Particles respond to changes in relative humidity differ-
ently depending on their size and composition.1 The present
study examines particles that undergo deliquescent and efflo-
rescent phase transitions with cycles of relative humidity
�e.g., many inorganic salts� but the methods introduced, in
particular the application of kinetic potential theory from
nucleation �Appendix�, should be applicable to general prob-
lems involving evaporation and condensation kinetics.

Early laboratory measurements of particle phase trans-
formations focused on micron-size levitated particles.2–4

These measurements produced valuable thermodynamic in-
formation on the densities and water activities of metastable
supersaturated drops under bulk conditions; the levitated
droplets being too large to have appreciable surface

effects.2,4 In recent years, tandem differential mobility ana-
lyzers have been used to measure properties down to just a
few nanometers in particle diameter, which is well into the
realm of surface free energy influence and associated small
particle effects.5–8 The present study is aimed at understand-
ing these small-particle phase transformations and their con-
nection to bulk behavior.

Several theoretical studies over the past decade focused
on particle size effects during deliquescence,9–11 and on the
nucleation of efflorescence.12,13 In the bulk limit where the
theory is well established, deliquescence is known to occur
sharply with increasing relative humidity on reaching free
energy equality between the initial �salt particle plus vapor�
and final �fully dissolved solution drop plus vapor� states.14

Equivalently, bulk deliquescence occurs under conditions
that �1� the chemical potential of salt in the final solution
equals the chemical potential of salt in the �pretransition�
bulk crystal and �2� the chemical potential of water in solu-
tion equals that of the vapor. The first condition assures a
saturated solution while the second gives a deliquescence
relative humidity �RHD� equal to the RH over the saturated
solution. For small systems the theories tend to diverge, as
do the criteria for predicting deliquescence RH, which can
differ significantly from the bulk. Several authors retain the
criterion of free-energy equality9,11 into the nanoregime
while Djikaev et al.10 demonstrate the existence of a nucle-
ationlike barrier to the deliquescence of small particles that
can effectively prevent the process until conditions are such
that the barrier vanishes. The latter situation is reminiscent of
the transformation of atmospheric aerosols particles to form
cloud droplets as described by the Köhler theory.15 There
appears to be no general agreement as to which criterion toa�Electronic mail: rlm@bnl.gov.
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use and subsequent authors either extended free energy
equality7 or applied the vanishing barrier criterion16 to pre-
dict deliquescence in the small particle regime.

The present analysis supports the vanishing barrier cri-
terion. This is reformulated in Sec. IV to preserve the idea of
chemical potential equality, as in the bulk limit, but applied
to a predeliquescence state consisting of a salt particle core
surrounded by a thin layer of solution. This physical picture
is consistent with studies indicating that salt surfaces are
thinly coated with water even at RH values far below the
deliquescence point.17 We find barrierless deliquescence ini-
tiated under the �unstable� equilibrium conditions that �1� the
chemical potential of salt in the core equals that in the thin
solution layer and �2� the chemical potential of water in the
solution layer equals that of the vapor. These are clear gen-
eralizations to arbitrary size of the corresponding bulk crite-
ria given above, but only in the bulk limit is this thin layer
criteria �TLC� equivalent to free energy equality. We will
show that for very small particles �ca. 1 nm radius� deliques-
cence can occur through a barrier crossing �nucleation�
mechanism at relative humidities well below the RHD pre-
dicted by the TLC. But for sodium chloride particles in the
smallest size range of available measurements �5–10 nm di-
ameter� the lowering of relative humidity relative to the TLC
activationless limit, enabled by the nucleation mechanism, is
about 1%–2%, roughly comparable to and thus indistinguish-
able from uncertainty in RH measurement. Thus the TLC
should be a useful predictor of deliquescence except at the
smallest particle sizes, below which deliquescence becomes
a nucleation phenomenon that can be predicted using meth-
ods from nucleation theory as described below.

Thermodynamic properties of the coated particles are
developed for layers of any thickness in Sec. II. Analysis is
carried out here first using the classical capillary drop model,
and then extended using the more complete Gibbs dividing
surface model to obtain a self-consistent theory for small
particles that includes interfacial tension composition depen-
dence. Section III develops Maxwell-like area constructions
that provide useful geometric interpretations for chemical
potential and free-energy differences and facilitate the calcu-
lation of these quantities directly from measurement. For
small droplets our results lead to a unified treatment of the
deliquescence and efflorescence processes with connections
to the Köhler theory and nucleation. The most significant
results lie in the natural extension of methods from nucle-
ation theory, specifically self-consistent nucleation theory,18

kinetic potential theory,19 and nucleation theorems20,21 to
deliquescence and efflorescence processes. Binary �salt-
water� free energy surfaces for deliquescence and efflores-
cence at different relative humidities are shown to be con-
nected through a simple linear relationship in particle water
content that is closely related to the nucleation theorem.
Nucleation barrier heights for deliquescence, efflorescence,
and the overall change in free energy associated with deli-
quescence are obtained graphically through the area con-
structions derived from coexistence curves for solution drops
and mixed-phase particles in equilibrium �stable or unstable�
with vapor. Changes in barrier height with RH are obtained
using nucleation theorems similar to those previously devel-

oped for binary vapor-liquid nucleation but applied here to
deliquescence and efflorescence. The investigation of these
unifying similarities between deliquescence and efflores-
cence and exploitation of their connections to nucleation
theory are the focus of the present study.

II. THERMODYNAMICS OF THE LAYERED PARTICLE
IN THE CLASSICAL LIQUID DROP AND GIBBS
DIVIDING SURFACE MODELS

Consider a mixed-phase drop of radius r inside of which
is a spherical core of undissolved nonvolatile salt of radius rc

�Fig. 1�. The drop together with its surrounding vapor is
treated as a closed system with fixed total amounts of water
and salt at constant temperature and pressure. Thus the sys-
tem is free to exchange heat and volume work with its envi-
ronment but not mass. For water there are N molecules total
in the system split between n1 molecules in the solution and
N−n1 in the vapor. Similarly there are ndry salt molecules in
the system split between n2 in the solution and ndry−n2 in the
undissolved core. The Gibbs free energy for the system is11

GA = �N − n1��1
v + n1�̄1

sol + n2�̄2
sol + �ndry − n2��̄2

c

+ �clAc + �lvA , �2.1a�

where �1
v and �̄1

sol are the chemical potentials for water in the
vapor and in solution and �̄2

sol and �̄2
c are the chemical po-

tentials for salt in solution and in the undissolved core. �cl

and �lv are the surface tensions of the core-liquid and liquid-
vapor interfaces, respectively, and Ac and A are the corre-
sponding surface areas. Equation �2.1a� gives the free energy
of the layered particle in the classical capillary drop model
wherein the interior phases are assigned bulk properties sepa-
rated by interfaces of zero thickness. Surface tensions will be
treated as independent of curvature but allowed composition
dependence. The condensed phase chemical potentials ap-
pearing in Eq. �2.1a� are evaluated at the pressure of the
vapor phase outside of the drop rather than under their own
interior pressure.22 The overbar serves as a reminder of this
subtle distinction. Thus �̄1

sol and �̄2
sol are the chemical poten-

rrr

rc

r

solution
layer

vapor

undissolved
core

σlv

σcl

FIG. 1. Mixed-phase particle indicating overall particle radius r, radius of
the undissolved core, rc, and interfacial tensions of the core-solution and
solution-vapor interfaces, �cl and �lv, respectively.
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tials of water and salt in bulk solution having the same com-
position as the solution layer and �̄2

c is the chemical potential
of bulk salt, all evaluated at the pressure of the surrounding
vapor. The terms N�1

v and ndry�̄2
c cancel on evaluating free

energy differences, leaving GA in terms of contributions from
the surface free energies of the two interfaces and the inter-
vening solution:

GA = GA�n1,n2� = n1��̄1
sol − �1

v� + n2��̄2
sol − �̄2

c�

+ �clAc + �lvA + C , �2.1b�

where C=N�1
v+ndry�̄2

c depends only on temperature, exter-
nal vapor pressure, and the total amounts of water and salt in
the system. From the viewpoint of Eq. �2.1b�, the thin layer
configuration results in the limit that n1 and n2 approach zero
and GA approaches �clAc+�lvAc+C�GTLC. Other authors
�e.g., Ref. 9� use a dry particle predeliquescence reference
state. The two approaches give equivalent results at the zero-
contact-angle condition:23 �cv=�cl+�lv �in which case
GTLC=�cvAc+C� where �cv is the dry core-vapor interfacial
tension.

For fully dissolved salt �rc=0� the number of salt mol-
ecules in the droplet is fixed at ndry and the one equilibrium
to consider is water exchange between droplet and vapor. For
this case Eq. �2.1b� reduces to

GB = n1��̄1
sol − �1

v� + ndry��̄2
sol − �̄2

c� + �lvA + C . �2.2�

A. Equilibrium states

Consider next the partial derivatives of GA with respect
to variation of the independent composition variables n1 and
n2. From Eq. �2.1b�,

� �GA

�n1
�

n2

= − �1
v + �̄1

sol + �lv� �A

�n1
�

n2

= − �1
v + �̄1

sol +
2�lvv1

r
, �2.3�

where v1 is the partial molecular volume of water in solution
�assumed incompressible� and r is the outer radius of the
drop. �More will be said about the absence of a surface ten-
sion derivative in Sec. II B.� In carrying out such differentia-
tions we treat �1

v and �̄2
c as constants by fixing temperature

and external vapor pressure, and use n1d�̄1
sol+n2d�̄2

sol=0
from the Gibbs–Duhem relation. �This last equality needs to
be modified for small droplets to be consistent with the more
complete Gibbs dividing surface model, as shown in the fol-
lowing section.� Terms such as �̄1

sol and A depend parametri-
cally on the salt partitioning numbers, n2 and nc=ndry−n2.
These follow at equilibrium on setting the partial derivative
with respect to n2 to zero:

� �GA

�n2
�

n1

= �̄2
sol − �2

c + �cl� �Ac

�n2
�

n1

+ �lv� �A

�n2
�

n1

= �̄2
sol − �̄2

c −
2�clvc

rc
+

2�lv�v2 − vc�
r

= 0. �2.4�

v2 is the partial molecular volume of salt in solution and vc is
the volume per molecule of salt in the core. The second

equalities in Eqs. �2.3� and �2.4� use the purely geometric
relations for spherical particles:

� �Ac

�n2
� =

2

rc
� �Vc

�n2
� = −

2

rc
� �Vc

�nc
� = −

2vc

rc
, �2.5�

� �A

�n2
� =

2

r
� �V

�n2
� =

2�v2 − vc�
r

, �2.6�

� �A

�n1
� =

2

r
� �V

�n1
� =

2v1

r
. �2.7�

V=Vc+Vl is the total volume of the drop, equal to the sum of
the core and solution volumes, and the salt conservation re-
quirement, dn2=−dnc is used. Differentiation of Eq. �2.2� for
the fully dissolved salt droplet gives

dGB

dn1
= − �1

v + �̄1
sol + �lv

�A

�n1
= − �1

v + �̄1
sol +

2�lvv1

r
.

�2.8�

The equilibrium chemical potential for salt in solution fol-
lows Eq. �2.4�:

�̄2
sol = �̄2

c +
2�clvc

rc
−

2�lv�v2 − vc�
r

. �2.9�

Similarly, let �1eq
v denote the equilibrium vapor chemical po-

tential �to distinguish from �1
v which is set by the external

vapor pressure� obtained by equating the right hand side of
Eq. �2.3� or Eq. �2.8� to zero:

�1eq
v = �̄1

sol +
2�lvv1

r
. �2.10�

This result for the fully dissolved salt droplet describes water
uptake by a stable solution drop and is familiar from Köhler
theory. The mixed-phase droplet, on the other hand, is in
unstable equilibrium with respect to the phase partitioning of
one or other of its components. This more complicated and
more interesting system is investigated in the following
sections.

B. Composition and curvature dependent interfacial
tension in the Gibbs dividing surface model

Equation �2.2�, describing the single interface solution
droplet surrounded by vapor, resembles the free energy for a
binary cluster containing n1 molecules of species 1 and n2

=ndry molecules of species 2 in classical nucleation
theory.18,24 In that case, as here, the surface tension is as-
signed its bulk value, generally a function of droplet compo-
sition, and curvature effects are neglected. Progress has been
made in including curvature effects in single component
clusters/droplets,25 but the analysis is more difficult for mul-
ticomponent systems. Fortunately, for droplets exceeding
several nanometers in diameter curvature is not likely to be
an important factor. For homogeneous nucleation of salt
within a supersaturated droplet during efflorescence, there
might well be a curvature effect due to the small �ca. 1 nan-
ometer� diameter of the critical salt nucleus, but in the ab-
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sence of quantitative information on its magnitude we will
neglect curvature dependence in the present study.

In carrying out the partial differentiations, for example in
Eq. �2.4�, we did not include terms for the partials of �lv and
�cl with respect to composition. Were the surface tension
independent of composition this would be correct. The aim
in this section is to show that even for the case that the
surface tension is composition dependent, much of the pre-
ceding analysis applies, although to be consistent, as shown
by Wilemski18 in the context of classical nucleation theory,
the surface excess concentrations defined in the Gibbs drop-
let model need to be taken into account. We show here that
similar considerations apply to the deliquescence and efflo-
rescence of small particles.

The Gibbs model resolves the occupation numbers n1

and n2 into interior and surface contributions: n1=nl1+ns1,
n2=nl2+ns2, distinguished here with subscripts l �for liquid�
and s, respectively. This partitioning depends on the choice
of dividing surface, which unless specified otherwise we take
to be the surface of tension.26 The Gibbs adsorption isotherm
for the outer �lv� interface is

ns1d�̄1
sol + ns2d�̄2

sol + Ad�lv = 0, �2.11�

from which follows the composition dependence of the in-
terfacial tension in terms of the surface excess concentra-
tions: ��lv /��̄i

sol=−nsi /A for species i. Interior occupation
numbers enter the Gibbs–Duhem relation:

nl1d�̄1
sol + nl2d�̄2

sol = 0. �2.12�

Similarly the interfacial tension for a small particle is evalu-
ated at the interior composition, x=nl2 / �nl1+nl2�, where x is
salt mole fraction in solution, and not at the total particle
composition. Only in the case that nli�ni can Eq. �2.12� be
written in terms of the total composition: n1d�̄1

sol+n2d�̄2
sol

=0. Otherwise, calculation of the thermodynamic properties
of small particles requires explicit evaluation of the surface
excess quantities in order to determine interior composition:
nli=ni−nsi. Fortunately there is available for this purpose an
independent relation between n1s and n2s. Following Buff27

one considers the so-called “K” dividing surface for which
ns1

K v1+ns2
K v2=0. This surface has the property that its sepa-

ration distance from the surface of tension is related to the
curvature dependence of the interfacial tension, which van-
ishes as the two surfaces coincide. Thus for zero curvature
dependence the Buff condition,

ns1v1 + ns2v2 = 0, �2.13�

applies also at the surface of tension. Equation �2.13� implies
a solution volume within the surface of tension equal to the
classical drop volume:

V − Vc = nl1v1 + nl2v2 = n1v1 + n2v2, �2.14�

where Vc is the volume of the undissolved core for a mixed
phase drop. Also equal in the two models are the surface area
�A� and drop radius �r�, whereas the droplet composition in
equilibrium with vapor is given by 	nl1 ,nl2
 and not by the
classical drop composition 	n1 ,n2
. These observations are
essentially those of the “revised classical theory” of Wilem-
ski, but applied here to small particles and droplets undergo-

ing deliquescence and efflorescence. Equation �2.13� sup-
plies an auxiliary condition that is both necessary and
sufficient for Eqs. �2.2� to hold.24 From another perspective,
the analysis leading from Eq. �2.2� to Eq. �2.8� included
neither a term in Ad�lv nor surface excess quantities n1s and
n2s but the two omissions cancel via Eqs. �2.11� and �2.12�
when one begins with the more complete description of the
droplet provided by the Gibbs model.

For assumed curvature independence, the addition of Eq.
�2.13� provides sufficient information to compute both inte-
rior and surface occupation numbers. The interior composi-
tion follows the self-consistent, iterative solution to Eqs.
�2.8� and �2.9�, taking into account that v1 ,v2 ,�lv, and the
solution chemical potentials are all functions of the solute
mole fraction x=nl2 / �nl1+nl2�. The surface excess quantities
are given in terms of bulk properties as follows:24

ns1 = − A� xv2

�1 − x�v1 + xv2
��d�̄1

sol

dx
�−1�d�lv

dx
�

ns2 = − A� �1 − x�v1

�1 − x�v1 + xv2
��d�̄2

sol

dx
�−1�d�lv

dx
� . �2.15�

Provided the bulk composition dependence of the surface
tension and solution chemical potentials are known from
models or measurement they may be inserted into these
equations to obtain the surface excess quantities consistent
with curvature independence.

Similar results follow for mixed phase droplets begin-
ning with the separate application of Eq. �2.13� to each in-
terface, but from a practical standpoint such refinement of
the model is probably not worthwhile as the crystal-solution
interfacial tension, �cl, and its dependence on composition,
are largely unknown. In the absence of further information,
�cl is treated here as constant—consistent with setting sur-
face excess concentrations to zero.

III. AREA CONSTRUCTIONS

The activity of salt in solution can be obtained directly
from measurements of relative humidity over levitated solu-
tion droplets using an elegant graphical construction based
on the Gibbs–Duhem relation.3 In this bulk limit, surface
tension and interior pressure effects can be neglected and the
Gibbs–Duhem relation is

n1d�̄1
sol + n2d�̄2

sol = 0. �3.1�

Using d�̄1
soln=kTd ln RH and integrating from ln RH=a to

ln RH=b �cf. Fig. 2�, this becomes

�̄2
sol�a�� − �̄2

sol�b��
kT

= 
a

b �n1

n2
�d ln RH

� A1 + A2 + A6 + A7. �3.2�

Points a� and b�, indicated in the figure, give the droplet
composition at RH values corresponding to the integration
limits a and b. Equation �3.2� usefully gives chemical poten-
tial differences for the nonvolatile salt in solution from mea-
surements of the water uptake curve, n1 /n2= f��ln RH�, in
the bulk limit of large dry particle radius and fully dissolved
salt, n2=ndry. The reduced chemical potential difference is
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depicted in Fig. 2 by the solid curve and the relevant area is
that bounded by segments aa�, a�b�, b�b, and ba, which is
equal to the sum of regional areas specified on the right hand
side of Eq. �3.2�. For the case that a and b label conditions
for bulk-system efflorescence and deliquescence, respec-
tively, the area �integrating from a to b� gives the logarithm
of the salt activity at the efflorescence point relative to that of
the bulk crystal in equilibrium with saturated solution of spe-
cies ratio n1�b�� /n2, characteristic of the drop composition
upon deliquescence.

A. Free energy differences along the paths connecting
initial and final droplet/mixed particle states

A similar area relation can be derived for free-energy
differences. The following is a more general result that ap-
plies to small droplets as well as to the bulk limit. Substitut-
ing for �1eq

v from Eq. �2.10� in the right hand side of Eq.
�2.8� gives

dGB

dn1
= �1eq

v − �1
v = − kT ln� P1

P1eq
� . �3.3�

P1 is the actual water vapor pressure and P1eq is the equilib-
rium vapor pressure over the small drop, assuming that the
vapor is ideal. At vapor equilibrium P1= P1eq and dGB /dn1

=0.
A similar result follows Eqs. �2.3� and �2.4� for the

mixed-phase drop. Here the path is one for which both n1

and n2 are changing, but in such a way that the salt remains
in equilibrium:

� �GA

�n2
�

n1

= 0. �3.4�

Along this special path the line integral that one would nor-
mally use to evaluate changes in GA, when n1 and n2 change
arbitrarily, simplifies to integration over the n1 coordinate:

�dGA

dn1
�

eqPath
= �1eq

v − �1
v = − kT ln� P1

P1eq
� . �3.5�

Because the right hand side has the same form as in Eq.
�3.3�, identical expressions are obtained for free-energy dif-
ferences on integration:

Gf − Gi

kT
= − 

n1�i�

n1�f�

ln� P1

P1eq
�dn1, �3.6�

where i and f denote initial and final states under the fixed
external vapor pressure P1. Although obtained for integra-
tions along equilibrium paths, the free-energy differences are
path independent.

To illustrate application of Eq. �3.6� consider first the
bulk-limit water uptake curve a�b� for the fully dissolved
droplet �Fig. 2� and set P1= Pb�, so the drop having compo-
sition ratio n1�b�� /n2=n1�b�� /ndry is in equilibrium. For this
case the relevant area is that bounded by segments a�b�,
b�b�, and b�a�=A6+A7. A small droplet having water uptake
curve c�d�, and vapor pressure P1= Pd�, which is higher due
to the Kelvin effect, is in equilibrium at the same composi-
tion n1�d�� /ndry=n1�b�� /ndry and the relevant area here is
A4+A6. Dividing both sides of Eq. �3.6� by ndry we obtain for
these two cases the following free-energy interpretations for
the corresponding areas depicted in the figure:

Gb� − Ga�

ndrykT
= − 

a�

b�
ln� Pb

P1eq
�d� n1

ndry
� = − �A6 + A7� ,

�3.7�
Gd� − Gc�

ndrykT
= − 

c�

d�
ln� Pd

P1eq
�d� n1

ndry
� = − �A4 + A6� ,

with limits of integration: a��n1�a�� /ndry, b��n1�b�� /ndry,
etc. In the upper equation P1eq is taken along the solid curve
a�b�; in the lower one the dashed curve c�d� is used. Notice
that once P1eq has somehow been determined, such integra-
tions yield droplet free energy differences without reference
to bulk properties such as surface tension, density, or even to
demarcation of surface and interior properties as these are all
implicit in P1eq. This suggests that Eq. �3.6� is a much more
general result than is implied from its present derivation
based on the liquid drop/coated particle models of Sec. II.
The Appendix bears this out with an alternative derivation
based solely on the general kinetics of cluster evaporation
and growth.

B. Extension of the Richardson–Snyder construction
to small droplets

The great utility of the Richardson–Snyder area con-
struction �Eq. �3.2�� for direct interpretation of bulk water
uptake measurements motivates its extension to small sys-
tems where surface effects play an important role. The
Gibbs–Duhem relation now has to include the Laplace pres-
sure:

nl1d�1
sol + nl2d�2

sol = VdP , �3.8�

where V is the volume bounded by the surface of tension.
Under the assumption of curvature-independent surface ten-

b
ln(RH)

n1/n2

c d

a’

b’’ d’’

c’ b’ d’

a

A6

A7

A2A1 A3

A4

A5

FIG. 2. Depiction of equilibrium water uptake curves for fully dissolved
drops �n2=ndry� showing increase in drop water content as a function of
increasing RH for a constant amount of salt n2. Solid curve �a�b��: uptake
curve in the bulk limit of large n2. Dashed curve �c�d��: uptake curve for a
small particle with n2 in the range that surface effects are important. Note
shift of the equilibrium uptake curve to larger values of RH due to the
Kelvin effect. Areas of various subregions �A1−A7� are indicate in the figure
and discussed in Sec. III.
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sion this equals the total volume of the fully dissolved salt
solution as noted previously �Eq. �2.14� with Vc=0�. The
chemical potentials appearing in Eq. �3.8� �without an over-
bar� are defined under their own pressure, which due to the
curved interface is higher inside than outside by an amount
given by the Laplace relation �P=2�lv /r. The correspond-
ing differentials are also related:

d�1
sol = d�̄1

sol + v1dP

�3.9�
d�2

sol = d�̄2
sol + v2dP .

Multiplying the first and second equations by n1s and n2s,
respectively, and adding gives

ns1d�1
sol + ns2d�2

sol = ns1d�̄1
sol + ns2d�̄2

sol

+ �ns1v1 + ns2v2�dP

= ns1d�̄1
sol + ns2d�̄2

sol = − Ad�lv.

The second equality uses the Buff relation, Eq. �2.13�, and
the last the Gibbs adsorption isotherm, Eq. �2.11�. Adding the
last result to Eq. �3.8� gives the isothermal Gibbs–Duhem
relation in terms of the total occupation numbers of the so-
lution drop:

n1d�1
sol + n2d�2

sol = VdP − Ad�lv. �3.10�

From Eq. �3.10� we obtain a result analogous to Eq. �3.2�,
albeit complicated by the pressure and interfacial tension
terms on the right hand side:

�2
sol�c�� − �2

sol�d��
kT

= 
c�

d� �n1

n2
�d ln RH

−
1

n2kT


c�

d�
�n1v1 + n2v2�dP

+
1

n2kT


c�

d�
Ad�lv.

The term in v2 accounts for the effect of increased pressure
on the chemical potential of salt and can be brought to the
left hand side to cancel the pressure effect in �2

sol leaving
�̄2

sol:

�̄2
sol�c�� − �̄2

sol�d��
kT

= 
c

d �n1

n2
�d ln RH

−
1

n2kT


c

d

n1v1dP +
1

n2kT


c

d

Ad�lv

= A1 + A2 + A6 + A7. �3.11�

Note that the left hand sides of Eqs. �3.11� and �3.2� are
identical because for the bulk system the chemical potential
is a function only of temperature and composition: �̄2

sol�c��
= �̄2

sol�a�� and �̄2
sol�d��= �̄2

sol�b��. Hence the area summations
on the right hand side must also be equal. The middle inte-
gral of Eq. �3.11� requires attention. First, we use the fact
that the external pressure is low �ca. 1 atm� and constant in
the calculation to set dP=d�P where �P=2�lv /r is the
Laplace pressure. Integrating by parts,

1

n2kT


c

d

n1v1d�P =
1

n2kT��n1v1�P�c
d − 

c

d

�Pv1dn1�
=

1

n2kT��n1v1�P�c
d − 

c

d

�lv�2/r�dV�
=

n1�d�
n2

v1�P�d�
kT

−
n1�c�

n2

v1�P�c�
kT

−
1

n2kT


c

d

�lvdA ,

where compositions are evaluated along the dashed uptake
curve of Fig. 2 and transformation of the integral from vol-
ume to area in the third equality uses Eq. �2.7�. Substitution
into Eq. �3.11� gives the final result:

�̄2
sol�c�� − �̄2

sol�d��
kT

= 
c

d �n1

n2
�d ln RH +

n1�c�
n2

v1�P�c�
kT

−
n1�d�

n2

v1�P�d�
kT

+
1

n2kT


c

d

d�A�lv� , �3.12�

where the terms in Ad�lv and �lvdA have been combined.
Each term on the right hand side has a simple area interpre-
tation:


c

d �n1

n2
�d ln RH = A2 + A3 + A4 + A6, �3.13�

n1�c�
n2

v1�P�c�
kT

=
n1�c�

n2
�ln RH�c� − ln RH�a�� = A1,

�3.14�

n1�d�
n2

v1�P�d�
kT

=
n1�d�

n2
�ln RH�d� − ln RH�b��

= A3 + A4 + A5. �3.15�

Finally the last integral of Eq. �3.12� follows on equating the
areas on the left and right hand sides of Eq. �3.12� using Eq.
�3.11� for the left hand side:

A�d��lv�d� − A�c��lv�c�
n2kT

= A5 + A7. �3.16�

This completes our extension of the Richardson–Synder area
construction to small droplets. Equation �3.16� is an impor-
tant result that equates the difference in dimensionless sur-
face free energies �per molecule of salt� to the area between
the bulk and small drop growth curves �Fig. 2�. Approaching
the bulk limit the left hand side decreases as 1 /rdry while the
right hand side also becomes smaller as the dashed curve
becomes less shifted from the bulk result. Were the surface
tension independent of composition, with Ad�lv=0, Eq.
�3.16� would follow easily from the Kelvin relation for the
shift in RH with reduction in drop size. The present deriva-
tion based on the Gibbs dividing surface model explicitly
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takes into account the surface tension composition effect.
Equation �3.16� thus provides an area construction for ob-
taining differences in surface free energy, which should be
valid for droplets extending down to a few nanometers in
diameter—beyond which curvature effects not included in
the present analysis may apply.

IV. THIN LAYER MODEL AND DELIQUESCENCE
CRITERION

A. General case

Consider a spherical salt particle coated with a solution
layer thin enough that the total radius of the layered particle,
r, can be approximated by the dry particle radius, rdry, �r
�rdry�, but still thick enough to be assigned bulk thermody-
namic properties in the spirit of the capillarity approxima-
tion. As the amount of salt dissolved in the thin layer is also
small r�rdry�rc. These conditions describe the thin layer
limit of the mixed-phase particle depicted in Fig. 1. The TLC
defines a relative humidity at deliquescence �RHD� satisfying
the simultaneous equilibrium conditions of Sec. I: �1� the
chemical potential of salt in the core equals that of the dis-
solved salt in the thin layer and �2� the chemical potential of
water in the vapor phase equals that of the water in the thin
layer. These conditions are expressed more generally for so-
lution layers of arbitrary thickness by Eqs. �2.9� and �2.10�,
which are now considered in the thin layer limit. Beginning
with the salt equilibrium and rewriting Eq. �2.9� in reduced
units with respect to kT gives

�̄2
sol − �̄2

c

kT
=

2�clvc

kTrdry
−

2�lv�v2 − vc�
kTrdry

=
2���cl + �lv�vc − �lvv2�

kTrdry
�

2�c
effvc

kTrdry
, �4.1�

where

�c
eff = ��cl + �lv� − �lv

v2

vc
�4.2�

is an effective surface tension that is greater �less� than �cl

for molecular volume ratio v2 /vc less than �greater than�
unity.

Water and salt in bulk solution �chemical potentials with
overbars� satisfy the constant temperature Gibbs–Duhem
equation:

x1d��̄1
sol − �̄1

sat� + x2d��̄2
sol − �̄2

c� = 0, �4.3�

where, following convention, we express thermodynamic
properties of the bulk solution in terms of mole fractions x1

and x2 rather than the proportional molecular occupation
numbers n1 and n2. �̄1

sat is the chemical potential of water in
a bulk, saturated solution of the salt. By definition �̄2

sat− �̄2
c

=0, determining the constant of integration for Gibbs–
Duhem integration:

�̄2
sol − �̄2

c

kT
= − 

sat

sol � x1

x2
�d ln RH =

2�c
effvc

kTrdry
. �4.4�

The second equality presents an integral equation that can be
solved numerically for the upper limit of integration,
ln RHsol, as a function of rdry. For this purpose one needs the
water uptake curve, x1 /x2 as a function of RH for the bulk
solution, and this has been measured for various salts and
salt mixtures by Tang and co-workers2,4 for levitated solution
drops. Finally, for the deliquescence relative humidity we
have from Eq. �2.10�

ln RHD = ln RHsol +
2�lvv1

kTrdry
. �4.5�

Equations �4.4� and �4.5� provide a numerical route to the
evaluation of RHD. An analysis of these equations, based on
a linearized expansion of the salt molality about its saturated
value, and measured/estimated physicochemical properties,
is being applied to recent deliquescence measurements from
the Martin group at Harvard University on several different
alkali-halide salts and ammonium sulfate. These results will
be reported in a future publication.28 Here the TLC is illus-
trated for the special case of an ideal solution.

B. Specialization to an ideal solution

For a bulk solution following Raoult’s law,

Pw�x2� = x1Pw
0 = �1 − x2�Pw

0

or, equivalently,

ln�RH/100� = ln�Pw/Pw
0 � = ln x1, �4.6�

where x1 and x2 are the mole fractions of water and salt
�modeled as nondissociating�, respectfully, in the solution
layer, Pw

0 is the equilibrium vapor pressure over bulk liquid
water and Pw is the equilibrium vapor pressure over bulk
solution. Combining this last expression with Eq. �4.4� illus-
trates the Gibbs–Duhem integration:


sat

sol � x1

x2
�

bulk
d ln RH = 

sat

sol x1

x2
d ln x1

= 
sat

sol 1

x2
dx1 = − 

sat

sol 1

x2
dx2

= − ln� x2
TLC

x̄2
� , �4.7�

where x̄2 denotes the mole fraction of salt in the bulk satu-
rated solution and the superscript “TLC” refers to the mole
fraction of salt in solution satisfying the thin layer criterion.
Specializing Eqs. �4.4� and �4.5� to the ideal solution gives

ln� x2
TLC

x̄2
� =

2�c
effvc

kTrdry
�4.8�

and
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ln�RHD/100� = ln�1 − x2
TLC� +

2�lvv1

kTrdry
, �4.9�

providing a closed-form sum of Raoult’s law and Kelvin
terms for computing the RHD from dry particle radius and
properties of the system. Care must be taken that x2

TLC re-
mains well less than unity, a condition that Eq. �4.8� shows
will be violated for very small values of rdry due to failure of
the ideal solution model.

V. CALCULATIONS

Calculations are presented in the following subsections
illustrating various aspects of the theory for ideal solutions.

A. Thin layer criterion

Figure 3 shows RHD for several different values of �cl as
a function of dry particle diameter �=2rdry� in nanometers
obtained from Eqs. �4.8� and �4.9�. Curves top to bottom are
for �cl=0, 40, 50, 70, and 110 dyn/cm. Thermodynamic
properties, with the exception of x̄2, are from Mirabel et al.9

for deliquescence of a generic sodium chloride crystal:
v1=v2=3.03�10−23 cm3, vc=4.48�10−23 cm3, �lv
=70 dyn /cm, and T=300 K. We set x̄2=0.25 to match the
bulk RHD of 75% measured by Tang et al.2 The ideal solu-
tion curves of Fig. 3 show RHD passing through a maximum,
which shifts to larger dry diameter and becomes less distinct
with increasing product �c

effvc achieved here by increasing
�cl �Eq. �4.2��. For sufficiently large �c

effvc the indication is a
uniform decrease in RHD with decreasing dry diameter due
to dominance of Raoult’s law leading term in Eq. �4.9�. Such
behavior is not seen in the NaCl measurements but a differ-
ent salt, KI, does show the decrease in RHD with decreasing
dry particle size for particle diameters smaller than about 60
nm, the upper range of the measurements.28 For larger par-
ticles the TLC curves are seen to approach the bulk RHD

value independent of the core-liquid surface tension.

B. Phase diagram

Figure 4 shows the relative humidity in equilibrium with
the layered particle over the full range of layer thickness
�dotted curve� for dry particle diameter of 7.2 nm and �cl

=40 dyn /cm. The deliquescence relative humidity, RHD

=84.5%, is from Eqs. �4.8� and �4.9�. These conditions are
marked by the + sign of Fig. 3 and the intercept point “a” of
Fig. 4. Phase diagrams were also computed for several dif-
ferent conditions along the various curves of Fig. 3 by the
methods to be described but since the results are similar to
those presented here, we limit discussion to this particular
case. General points along the dotted curve of Fig. 4 are
obtained numerically from Eqs. �2.3� and �2.4� �the thick
layer model� on equating salt and water activities between
the crystal-solution and solution-vapor phases, respectively.
The solid curve shows the relative humidity in equilibrium
with the single-phase solution drop following Eqs. �2.9� and
�2.10�. The solid horizontal line �a-a�� is located at the RHD.
The dashed horizontal line marks a nucleated deliquescence
transition just below the RHD. Nucleation rates under these
conditions are largely a function of nucleation barrier height
�Fig. 5�. The horizontal line �A-X-B�, at RH=77.0%, gives
conditions at free-energy equality GA=GB, with GA from Eq.
�2.1b� in the limit that n1 and n2 approach zero, and GB from
Eq. �2.2� for the fully dissolved solution drop, both calcula-
tions carried out at this same value of RH. This example
shows the free-energy equality criterion underestimating
RHD by more than 7%. Similar phase diagrams, in different
coordinates, were obtained by Shchekin et al.,29 in their re-
cent thermodynamic study of droplet formation around a
soluble condensation nucleus.

Figure 4 illustrates the phase rule for macroscopically
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FIG. 3. Deliquescence relative humidity �RHD� for NaCl obtained using the
thin layer criterion. Curves: RHD as a function of dry particle diameter
�nanometer� for �lv=70 dyn /cm and the several different values of �cl in-
dicted in the figure. Convergence to the bulk RHD is seen at large dry
particle size. The + sign marks the dry particle diameter of 7.2 nm and
core-liquid surface tension �cl=40 dyn /cm used throughout the calcula-
tions of Figs. 4–9.
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FIG. 4. Phase diagram for particle-droplet transformation of NaCl-water
droplets showing RH �logarithmic scale� vs n1 /ndry. Dotted curve: equilib-
rium states of the mixed-phase particle beginning with thinly coated salt �a�
and following increasing dissolution of the salt core through states �X�, �b�,
�c�, and finally �o�, the state of complete dissolution for which rc=0. Solid
curve: equilibrium states of the fully dissolved solution droplet showing
uptake of increasing amounts of water with increasing RH through condi-
tions �o�, �c��, �B�, and �a��. Line a-a� marks the activationless deliques-
cence transition at the RHD �84.5%�. The dashed horizontal line marks a
nucleated deliquescence transition just below the RHD. Line A-X-B marks
the equal area construction for free energy equality. Points c� and c mark
approximate location of the initial and critical efflorescence states,
respectively.
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small systems under different pressures from curved inter-
faces. This rule takes the form f =c+1, independent of the
number of phases, where f is the number of degrees of free-
dom and c �here equal to 2� is the number of
components.30,31 Thus with temperature and dry particle size
fixed, the sole remaining degree of freedom is RH along each
of the mixed-phase and single-phase branches shown in the
figure. Positive slope regions, the lower portion �ocb� of the
mixed-phase branch and the entire single-phase branch, are
in stable equilibrium with respect to the exchange of water.
The upper portion �ab� of the mixed-phase branch is in un-
stable equilibrium with respect to water, but stable with re-
spect to exchange of salt between the solution and undis-
solved core. The lower portion is in unstable equilibrium
with respect to the exchange of salt. These stability proper-
ties become clear on inspection of the free-energy surfaces
�Figs. 8 and 9�.

C. Applications of the area construction: Nucleation
barrier and free-energy surfaces

The following analysis requires the reversible work of
forming mixed-phase particles and single-phase solution
drops starting from the thin layer configuration. This is the
free-energy difference:

W�n1,n2� = G�n1,n2� − GTLC, �5.1�

where GTLC, the free-energy of the thin layer configuration,
follows Eq. �2.1b� in the limit that n1 and n2 approach zero.
For notational simplicity the dependence on dry particle size
ndry and relative humidity have been omitted from Eq. �5.1�.
For n2=ndry we have the case of fully dissolved core and
G�n1 ,n2�=GB�n1 ,n2� �Eq. �2.2� and solid curve of Fig. 4�.
Along the mixed-phase branch, which is the dotted curve of
Fig. 4, G=GA. In the thin layer limit both n1 and n2 are small
compared to ndry, which conditions are marked by point “a”
along the dotted curve. On replacing water vapor pressure
with relative humidity, the general result of Eq. �3.6� be-
comes

WRH�n1,n2�
kT

= − ndry
0

n1/ndry

ln� RH

RHeq
�d� n1�

ndry
� , �5.2�

with limits of integration from the initial thin layer configu-
ration n1��i��0 to the final state n1��f�=n1 where n1� is a
dummy integration variable. The subscript on W indicates
that the integral is evaluated for a prescribed constant value
of RH while RHeq, which is a function of n1� /ndry, follows the
phase diagram curves of Fig. 4. The integration path follows
the curve �a-X-b-c-o� for the mixed-phase branch and con-
tinues �o-c�-B-a�� along the single-phase branch, noting the
change in sign for dn1�, first at the location “b” of the maxi-
mum in n1 /ndry along the mixed-phase branch, and again at
o. Inspection of Eq. �5.2� and Fig. 4 reveals a geometric
interpretation for W in terms of areas bounded by the various
curves and lines shown in the figure. The condition of free-
energy equality is given by the Maxwell-like equal area con-
struction, line �A-X-B�, with the area bounded by line seg-
ment A-X and the upper portion of the mixed-phase branch,
curve �a-X�, equal to the area of the lower crescent, bounded
by curves �X-b-c-o�, �o-c�-B�, and line segment �X-B�. The
free-energy difference at the RHD �GTLC−GB at RH
=84.5%� is substantial. In Fig. 4 this difference is shown
geometrically as proportional to the large crescent-shaped
area bounded by curves �a-X-b-c-o�, �o-c�-B-a��, and line
�a-a��. This illustrates �see also Fig. 6� the large reduction in
free-energy accompanying �irreversible� deliquescence at the
RHD.

Nucleation barriers to deliquescence for fixed values of
the relative humidity, at and slightly below the RHD �for
example at the RH indicated by the dashed horizontal line of
Fig. 4�, are shown in Fig. 5. For given RH the barrier maxi-
mum is located at the crossing point of the corresponding
horizontal line and the top portion of the mixed phase branch
�Fig. 4�. The barrier height is proportional to the area
bounded by this line segment and the mixed-phase curve up
to the crossing point. It is seen that both the barrier height
and the critical layer thickness vanish at the RHD. But
slightly below the RHD deliquescence can be seen as a nucle-
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FIG. 5. Reversible work of mixed-phase NaCl-water particle formation rela-
tive to the thin layer reference state. Figure shows the presence of a nucle-
ation barrier at relative humidities below the RHD. Deliquescence occurs
without barrier at the RHD and by barrier crossing at lower RH values �e.g.,
the middle and upper curves�.
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FIG. 6. Free energy of NaCl-water particle formation at deliquescence. Re-
versible work for forming the mixed-phase particle �dashed curve a-b-c-o�
and the solution drop �solid curve o-c�-a��. RH is fixed at the RHD and free
energy is taken relative to the thin layer limit �a�. State labels follow Fig. 4.
The figure shows substantial lowering of free energy �by about 700kT� ac-
companying deliquescence at the RHD. States �a� and �a�� exhibit maximum
and minimum values in free energy corresponding to unstable and stable
equilibrium, respectively, with respect to water vapor exchange.
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ation process requiring fluctuations to surmount the barrier.
Depending on kinetics, such fluctuations are likely to be ef-
fective only for barrier heights less than about 10kT–15kT,
implying that for this dry particle diameter �7.2 nm�, and
larger, the nucleation of deliquescence cannot occur at RH
values much below the RHD, as there the barrier heights
would be too large to have an appreciable crossing rate. Fig-
ure 5 shows barrier profiles for three different RH values and
the fixed dry particle size. In general, the smaller the dry
particle size, which enters through the prefactor ndry in Eq.
�5.2�, the smaller the barrier and the wider the range of RH
over which nucleation can occur. In the dry particle size
range of available measurements �particles with diameter
greater than about 5 nm� the nucleation effect is essentially
not observable given the typical 1%–2% uncertainty in mea-
surement of RH. On the other hand, for particles with diam-
eters approaching 1–2 nm, it should be possible to see deli-
quescence significantly below the RHD. Although size is the
main factor controlling crossing rate, other variables includ-
ing observation time and material properties, for different
salts, also need to be taken into account. A more complete
analysis of the kinetics of deliquescence barrier crossing is
underway and will be presented in future publications.

The full range of integration of Eq. �5.2�, with RH held
constant at the RHD, is shown in Fig. 6. This is the activa-
tionless �no-barrier� case and the early portion of the trace
from a to b matches the solid curve of Fig. 5. The sign
changes in dn1 at b and o are evident as cusps in the figure.
Deliquescence to the stable drop at a� is seen to occur with a
sizeable decrease in free energy with GTLC exceeding GB by
about 700kT, in clear violation of the free energy equality
criterion. The presence of the barrier �Fig. 5�, which for all
practical purposes is crossable only near the RHD, prevents
the transition from occurring at lower RH where the initial
and final state free energies are equal. Integration of Eq. �5.2�
with RH held constant at 50% is shown in Fig. 7 �other
quantities have the same values as in Fig. 6�. These condi-
tions are representative of those at the efflorescence nucle-
ation transition �c�-�c�. Both c� and c are stable minima
with respect to exchange of water. Point c describes a small
salt particle in �unstable� equilibrium with highly supersatu-
rated salt solution. This is the critical nucleus configuration
for efflorescence and it is seen to be slightly higher in free
energy than the pre-efflorescent drop at c�. The difference is
in fact equal to the barrier height for nucleation of salt from
the supersaturated drop. The reference thin layer state is off
scale at the origin of the figure.

D. Transformation of free-energy surfaces
and extensions of the nucleation theorem

To excellent approximation, properties inherent to the
particle/drop specified by n1 and n2, which include surface
tension, density, and evaporation rate, are all independent of
the external vapor RH. Indeed this is the key assumption
behind the general derivation of Eq. �3.6� given in the Ap-
pendix. As a result, the free-energy surfaces for different
values of RH are simply related. To see this, choose some

convenient reference relative humidity, for example the RHD.
Evaluating Eq. �5.2� at the RHD and subtracting gives an
especially transparent result:

WRH�n1,n2� = WDRH�n1,n2� − n1kT ln� RH

RHD
� , �5.3�

where WDRH�n1 ,n2� is the free-energy surface for external
relative humidity fixed at the RHD and the effect of any
change in RH lies in the second term on the right. Equation
�5.3� completes the unification of deliquescence and efflores-
cence processes by showing connection between constant
RH cross sections of the three-dimensional free-energy sur-
face WRH�n1 ,n2�. Including those cross sections for RH val-
ues near deliquescence and efflorescence. A similar situation
occurs classically with the free-energy barriers describing
nucleation from ideal vapors.

Figures 8 and 9 show the corresponding binary free-
energy surfaces, WDRH�n1 ,n2� and WERH�n1 ,n2�, respec-
tively, from Eqs. �2.1� and �2.2�. Superimposed on the con-
tours are the mixed-phase particle and fully dissolved
�n2 /ndry=1� branches from the phase diagram of Fig. 4.
These are identical curves in each figure. Contours crossing
the mixed-phase branch have vertical slopes according to Eq.
�3.4� as is evident in the figure. This is true even near the
binary saddle point marking the critical nucleus for efflores-
cence in Fig. 9, although the limited contour line resolution
here makes this difficult to see. Contour levels are not
marked in the figures but can be inferred in the case of Fig.
9 by locating crossings with the single- and mixed-phase
branches and using Fig. 7 to interpolate the corresponding
free energies.

Differentiation of Eq. �5.3� yields an important step to-
ward derivation of a nucleation theorem applicable to deli-
quescence and efflorescence processes:

2500

2000

1500

1000
1.21.00.80.60.4

n1/ndry

W/kT

c'

c

b

o

FIG. 7. Free energy of NaCl-water particle formation near efflorescence.
Reversible work relative to the thin-layer limit for forming the mixed-phase
particle �dashed curve o-c-b-a where state “a” is off scale at the origin� and
the solution drop �solid curve o-c�� at RH=50%, which is near the measured
efflorescence nucleation transition. State labels follow Fig. 4. c�-c is the
efflorescence transition. This is slightly uphill in energy �by about 14kT,
which is the free energy needed to form the critical salt nucleus under these
conditions� and is accompanied by some loss of water from the particle.
Both c and c� represent stable equilibria with respect to exchange of water.
The mixed particle state c �consisting of the critical nucleus in solution� is
unstable both to dissolution �return to c�� and core growth, with much lower
energy achievable by core growth.
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1

kT
� �W�n1,n2�

� ln RH
�

T,n1,n2

= − n1. �5.4�

Equation �5.4� applies to clusters of any size and is in es-
sence a consequence of the law of mass action invoked with

the ideal vapor assumption made in the derivation of Eq.
�5.2� �Appendix�. In order to relate this derivative to the rate
of nucleation, and hence to experiment, the derivative must
be obtained at the saddle point of the barrier W�

=W�n1
� ,n2

��, which corresponds to the critical cluster size.
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FIG. 8. Free-energy surface at relative humidity slightly below the RHD. The lower portion of the figure shows the nucleation barrier and the asterisk marks
the critical nucleus. The dotted curve and horizontal line mark the mixed-phase and fully dissolved solution branches from the phase diagram of Fig. 4. The
upper asterisk marks the deliquescence final state.
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FIG. 9. Free-energy surface at relative humidity near efflorescence. The upper portion of the figure shows the binary nucleation surface and the lower asterisk
here marks the critical salt nucleus in unstable equilibrium with the surrounding solution drop. The dotted curve and horizontal line mark the mixed-phase and
fully dissolved solution branches from the phase diagram of Fig. 4. The upper asterisk marks the initial metastable solution droplet just prior to efflorescence.
Upon barrier crossing the system undergoes irreversible lowering of free energy arriving at the origin of the figure �a thinly coated salt particle and
surrounding vapor�.
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Since, in particular, n1
� is itself a function of RH, we use the

fact that ��W /�n1�n1
� =0, which is the case both at the initial

and critical states for efflorescence �states c and c� of Fig. 7�
and at the deliquescence barrier maximum �see Eq. 10 of
Ref. 32�.

For deliquescence the initial thin layer configuration has
W=0 and n1

� is the number of water molecules in the critical
solution layer. Thus the barrier height for the process is
�Wdel

� =W�n1
��. Using Eq. �5.4� and maximum condition

gives the nucleation theorem for deliquescence:

1

kT
� ��Wdel

�

� ln RH
�

T
= − n1

�. �5.5�

Here a decrease in barrier height follows an increase in RH
in accordance with Fig. 5. Note that Eq. �5.5� follows imme-
diately from the area interpretation of the barrier height,
given above in connection with Fig. 4, and the fundamental
theorem of calculus. For efflorescence the barrier height
takes the form �Weff

� =W�c�−W�c�� to give just a slightly
more complicated extension of the nucleation theorem:

1

kT
� ��Weff

�

� ln RH
�

T
= n1�c�� − n1�c� . �5.6�

Here, because the number of water molecules in the particle
is higher for state c� than it is for c �cf. Fig. 7�, Eq. �5.6�
yields a decrease in barrier height with decrease in RH in
agreement with observations. Locations c and n1

� are binary
saddle points of W marked by asterisks in Figs. 8 and 9. Note
that both saddle points lie on the mixed-phase branch of the
phase diagram, another common feature of the two pro-
cesses, while the initial state for efflorescence �location c� of
Fig. 7� and the final state for deliquescence lie on the solu-
tion branch, and are also indicated by asterisks in the two
figures.

In addition to a loss of water upon efflorescence, Fig. 9
shows that a significant fraction �several percent� of the total
salt in the small drop is used to form the �even smaller� salt
critical nucleus within that drop. Unlike efflorescence from
bulk solution, which is usually described as a single compo-
nent nucleation process, these small systems require a fully
binary treatment in order to take into account limited mate-
rial availability and changes in composition of both compo-
nents.

VI. SUMMARY AND DISCUSSION

It is useful to summarize similarities between deliques-
cence and first-order phase transformation. We have seen
how single-particle free-energy equality, GA=GB, can be in-
terpreted geometrically using a Maxwell-like equal area con-
struction �Fig. 4�, but that this condition does not describe
the deliquescence transition except in the bulk limit. For
smaller particles the transition occurs instead either in the
metastable regime, by a nucleation process, or at the thresh-
old for instability where the nucleation barrier itself vanishes
and the process becomes activationless. The latter condition,
analogous to entering a spinodal regime, is determined by
the thin layer criterion.

The thin layer criterion predicts onset of deliquescence
under the condition of simultaneous equilibrium between salt
in the undissolved particle core and in the thin solution layer,
and between water in the thin layer and the surrounding va-
por. For RH values below the TLC there is already a strong
driving free energy that would otherwise force the process
sooner were it not for the nucleation barrier, which first van-
ishes precisely at the point that the TLC holds. From this
viewpoint the deliquescence transformation is kinetically
limited �by the barrier� rather than thermodynamically con-
trolled. Nevertheless, this kinetics is largely hidden for dry
particle radii greater than just a few nanometers where deli-
quescence can only be observed at the instability threshold,
much like with the Köhler-theoretic activationless transfor-
mation of cloud condensation nuclei into droplets, which oc-
curs at the joining of the stable and unstable branches of the
phase diagram governing water-particle exchange.15 For deli-
quescence, at any given undersaturation �RHD−RH� the
nucleation barrier quickly exceeds many kT with increase in
dry particle size and even very small changes in RH lead to
large �many kT� changes in barrier height in accord with the
nucleation theorem �Eq. �5.5��. This circumstance presents a
barrier that has in effect has either vanished or is
insurmountable—just as in Köhler theory. The present theory
predicts that for dry particle radii approaching 1–2 nm there
be a measurable range of RH values, below the RHD of the
thin layer criterion, for which one has the intermediate case:
surmountable barrier heights of just a few kT and crossing
rates determined by nucleation theory �in detail this will de-
pend on material properties and observation time as well as
on particle size�.

The present theory exhibits strong similarities between
deliquescence and efflorescence that are not evident in the
bulk. These include common area constructions for the free
energy changes associated with these processes and a com-
mon free-energy surface. Setting RH in Eq. �5.3� equal to the
efflorescence relative humidity RHE shows the only differ-
ence �at constant temperature� between the free energy sur-
faces of Figs. 6 or 8, for deliquescence, and Figs. 7 or 9, for
efflorescence, is term proportional to n1:

WERH�n1,n2� = WDRH�n1,n2� + n1kT ln�RHD

RHE
� . �6.1�

Accordingly, information on efflorescence is contained
within the deliquescence free-energy surface and vice versa.
For example, a point along the ridge of maxima at constant
n1, seen along the upper branch of the mixed-phase curve
�dashed curve of Fig. 8 near n1 /ndry=0.58�, becomes on low-
ering of the relative humidity to the ERH the saddle point for
nucleation of efflorescence indicated by the asterisk in Fig. 9.
Such similarities only become apparent when the efflores-
cence is treated, as it is here, as a fully binary nucleation
process. This unified view opens the door for powerful meth-
ods developed historically within the context of nucleation
theory to be carried over to the deliquescence and efflores-
cence of small particles. The methods developed in this pa-
per included: �1� application of kinetic potential theory, �2�
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applications of nucleation concepts such as capillarity, self-
consistent nucleation theory, and the Gibbs dividing surface,
�3� extension of nucleation theorems to relate change in deli-
quescence and efflorescence barrier heights to changes in RH
and difference in number of water molecules �positive or
negative� in the particle/drop, and �4� demonstration that the
binary free energy surfaces for deliquescence and efflores-
cence are linear in ln RH �in the presence of ideal vapor� and
related through Eq. �6.1�.
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APPENDIX: MICROSCOPIC DERIVATION
OF EQS. „3.6… and „5.2…

In this appendix an alternative derivation of the revers-
ible work �left hand side of Eq. �5.1�� is presented using
detailed balance considerations applied to the kinetics of par-
ticle evaporation and growth. The approach is conceptually
more straightforward than the thermodynamic derivation
used to obtain Eqs. �3.6� and �3.7� and suggests a generality
for these equations that extends well beyond the capillary
drop models of Sec. II. What follows closely parallels the
kinetic potential formulation of nucleation theory.19

Consider the exchange of water vapor between particles
of size g and g+1 where g now replaces n1 as the number of
water molecules in the particle. The total number of salt
molecules present independent of phase remains fixed at ndry.
According to detailed balance,

�gng = �g+1ng+1, �A1�

where �g��g� is the rate of water vapor condensation onto
�evaporation from� a particle of size g. The constrained equi-
librium concentration of clusters, ng, satisfies the Boltzmann
relation:

ng 	 exp�−
W�g�

kT
� , �A2�

where W�g� is the reversible work required to form a particle
of size g. From Eqs. �A1� and �A2�,

W�g + 1� − W�g�
kT

= ln� ng

ng+1
� = ln��g+1

�g
� . �A3�

Adding such differences for a sequence of evaporation/
condensation steps gives

W�g2� − W�g1�
kT

= ln�ng1

ng2

�
= ln� ng1

ng1+1

ng1+1

ng1+2
¯

ng2−1

ng2

�
= − ln� �g1

�g1+1

�g1+1

�g1+2
¯

�g2−1

�g2

�
= − �

g=g1

g2−1

ln� �g

�g+1
� . �A4�

The right hand side of Eq. �A4� has been called the kinetic
potential.19 This is an expression solely in terms of rate con-
stants, which is here equal to the difference in the reduced
thermodynamic potentials W /kT of particles of sizes g2 and
g1.

For a single particle in equilibrium with its vapor the
condensation rate �g

eq equals the evaporation rate �g+1. This
allows Eq. �A4� to be rewritten using the identity

�g

�g+1
=

�g

�g
eq

�g
eq

�g+1
=

�g

�g
eq , �A5�

in the form

W�g2� − W�g1�
kT

= − �
g=g1

g2−1

ln� �g

�g
eq� = − �

g=g1

g2−1

ln� P1

P1eq�g�
� .

�A6�

The last equality makes use of the proportionality between
vapor condensation rate and vapor pressure for ideal vapors.
Any accommodation coefficient different from unity will af-
fect both sides of Eq. �A1� equally and cancel from the final
result. P1 is the actual vapor pressure and P1eq�g� is that
pressure of vapor for which the particle of size g is in equi-
librium with its environment. Note that the critical size g
=g�, for which P1eq�g��= P1, maximizes W�g� and makes no
contribution to the cumulative sum in Eq. �A6�, as expected
at an extremum in W. Converting the right hand side from
summation to integration yields the more general, molecular-
based, derivation of Eq. �3.6� �and Eq. �5.2�� we seek:

W�g2� − W�g1� = − kT
g1

g2

ln� P1

P1eq�g�
�dg �A7�

In computer simulations of cluster dynamics it has been
found expedient to first obtain the evaporation rate and then
use detailed balance to get the condensation rate. Thus the
right hand side of Eq. �A4� can, in principle, be evaluated by
combining computer simulation- or theory-based estimates
of the cluster evaporation rate with detailed balance. One
possible computational approach is to use variational transi-
tion state methods similar to those that have been employed
in dynamical nucleation theory in order to estimate size-
dependent molecular-cluster evaporation rates.33

1 S. T. Martin, Chem. Rev. �Washington, D.C.� 100, 3403 �2000�.
2 I. N. Tang, H. R. Munkelwitz, and N. Wang, J. Colloid Interface Sci. 114,
409 �1986�.

3 C. B. Richardson and T. D. Snyder, Langmuir 10, 2462 �1994�.

194705-13 Deliquescence and efflorescence J. Chem. Phys. 131, 194705 �2009�

Downloaded 08 Jan 2010 to 130.199.3.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1021/cr990034t
http://dx.doi.org/10.1016/0021-9797(86)90426-1
http://dx.doi.org/10.1021/la00019a072


4 I. N. Tang and H. R. Munkelwitz, J. Geophys. Res. 99, 18801 �1994�.
5 K. Hameri, M. Vakeva, H.-C. Hansson, and A. Laaksonen, J. Geophys.
Res. 105, 22231 �2000�.

6 K. Hameri, A. Laaksonen, M. Vakeva, and T. Suni, J. Geophys. Res. 106,
20749 �2001�.

7 G. Biskos, A. Malinowski, L. M. Russell, P. R. Buseck, and S. T. Martin,
Aerosol Sci. Technol. 40, 97 �2006�.

8 G. Biskos, L. M. Russell, P. R. Buseck, and S. T. Martin, Geophys. Res.
Lett. 33, L07801 �2006�.

9 P. Mirabel, H. Reiss, and R. K. Bowles, J. Chem. Phys. 113, 8200
�2000�.

10 Y. S. Djikaev, R. Bowles, H. Reiss, K. Hameri, A. Laaksonen, and M.
Vakeva, J. Phys. Chem. B 105, 7708 �2001�.

11 L. M. Russell and Y. Ming, J. Chem. Phys. 116, 311 �2002�.
12 T. B. Onasch, R. McGraw, and D. Imre, J. Phys. Chem. A 104, 10797

�2000�.
13 Y. Gao, S. B. Chen, and L. E. Yu, Atmos. Environ. 41, 2019 �2007�.
14 I. N. Tang and H. R. Munkelwitz, Atmos. Environ. 27A, 467 �1993�.
15 P. Mirabel, H. Reiss, and R. K. Bowles, J. Chem. Phys. 113, 8194

�2000�.
16 Y. S. Djikaev, J. Chem. Phys. 116, 9865 �2002�.
17 Q. Dai, J. Hu, and M. Salmeron, J. Phys. Chem. B 101, 1994 �1997�.
18 G. Wilemski, J. Chem. Phys. 80, 1370 �1984�.

19 D. T. Wu, Solid State Phys. 50, 37 �1997�.
20 D. Kashchiev, J. Chem. Phys. 76, 5098 �1982�.
21 R. McGraw and D. Wu, J. Chem. Phys. 118, 9337 �2003�.
22 H. Reiss, Methods of Thermodynamics �Dover, Mineola, 1996�, Chap. 11.
23 P. G. de Gennes, Rev. Mod. Phys. 57, 827 �1985�.
24 A. Laaksonen, R. McGraw, and H. Vehkamaki, J. Chem. Phys. 111, 2019

�1999�.
25 R. McGraw and A. Laaksonen, J. Chem. Phys. 106, 5284 �1997�.
26 S. Ono and S. Kondo, in Encyclopedia of Physics, edited by S. Flugge

�Springer, Berlin, 1960�, Vol. 10, p. 134.
27 F. Buff, Z. Elektrochem. 56, 311 �1952�.
28 E. R. Lewis, R. McGraw, S. T. Martin, M. Smith, G. Biskos, A. L.

Mifflin �in preparation�.
29 A. K. Shchekin, I. V. Shabaev, and A. I. Rusanov, J. Chem. Phys. 129,

214111 �2008�.
30 A. Firoozabadi, Thermodynamics of Hydrocarbon Reservoirs �McGraw-

Hill Professional, New York, 1999�, p. 114.
31 M. E. Wise, S. T. Martin, L. M. Russell, and P. R. Buseck, Aerosol Sci.

Technol. 42, 281 �2008�.
32 R. K. Bowles, R. McGraw, P. Schaaf, B. Senger, J.-C. Voegel, and H.

Reiss, J. Chem. Phys. 113, 4524 �2000�.
33 S. M. Kathmann, G. K. Schenter, and B. C. Garrett, J. Chem. Phys. 111,

4688 �1999�.

194705-14 R. McGraw and E. R. Lewis J. Chem. Phys. 131, 194705 �2009�

Downloaded 08 Jan 2010 to 130.199.3.130. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

http://dx.doi.org/10.1029/94JD01345
http://dx.doi.org/10.1029/2000JD900220
http://dx.doi.org/10.1029/2000JD900220
http://dx.doi.org/10.1029/2000JD000200
http://dx.doi.org/10.1080/02786820500484396
http://dx.doi.org/10.1029/2005GL025199
http://dx.doi.org/10.1029/2005GL025199
http://dx.doi.org/10.1063/1.1315993
http://dx.doi.org/10.1021/jp010537e
http://dx.doi.org/10.1063/1.1420727
http://dx.doi.org/10.1021/jp0024064
http://dx.doi.org/10.1016/j.atmosenv.2006.12.014
http://dx.doi.org/10.1063/1.1315992
http://dx.doi.org/10.1063/1.1475743
http://dx.doi.org/10.1021/jp9625772
http://dx.doi.org/10.1063/1.446822
http://dx.doi.org/10.1016/S0081-1947(08)60604-9
http://dx.doi.org/10.1063/1.442808
http://dx.doi.org/10.1063/1.1565098
http://dx.doi.org/10.1103/RevModPhys.57.827
http://dx.doi.org/10.1063/1.479470
http://dx.doi.org/10.1063/1.473527
http://dx.doi.org/10.1063/1.3021078
http://dx.doi.org/10.1080/02786820802047115
http://dx.doi.org/10.1080/02786820802047115
http://dx.doi.org/10.1063/1.1288802
http://dx.doi.org/10.1063/1.479230



